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We analyze the Bose-Hubbard model of hardcore bosons with nearest-neighbor hopping and repulsive
interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the
phase diagram of this model as a function of the chemical potential and the relative strength of hopping and
interaction. In the strong-interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings,
in contrast to their counterparts on square, triangular, and kagome lattices, are either translationally invariant
resonant valence bond �RVB� phases with no density-wave order or have coexisting density-wave and RVB
orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally
invariant Mott states undergo direct second-order superfluid-insulator quantum phase transitions. We compute
the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when
approached through the tip of the Mott lobe, belong to the inverted XY universality class.
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I. INTRODUCTION

The study of microscopic models which may lead to ex-
otic quantum phases has been carried on for a long time in
condensed-matter physics. Recently, one such model system,
namely, the two-dimensional Bose-Hubbard model on a lat-
tice, has received a great deal of attention. One of the reasons
for this renewed attention is the possibility of experimental
realization of such a model using cold atoms trapped in op-
tical lattices.1,2 However, the Bose-Hubbard model is theo-
retically interesting in its own right. In particular, it has
recently been pointed out that the superfluid-insulator transi-
tions for fractional Boson filling factors in this model may be
of non-Landau-Ginzburg type in the sense that the low-
energy theory for these transitions cannot be described in
terms of order-parameter fields of the phases in either side of
the transitions.3 Instead, as pointed out in several studies of
the model,3–5 the transition is aptly described in terms of
vortices which are topological excitations of the superfluid
and whose condensation ultimately leads to destabilization of
the superfluid phase in favor of insulating Mott phases.3

Such a dual vortex theory provides a list of possible compet-
ing Mott phases via general symmetry requirements of the
underlying lattice.3 In particular, the geometric frustration
induced by the lattice structure, which plays a key role in
determining the nature of these competing Mott phases, is
quite naturally described by the dual vortex theory.

Another, more direct and quantitative, approach to study-
ing these Bose-Hubbard models on a lattice has been numeri-
cal quantum Monte Carlo �QMC� simulations.6–8 These
QMC studies provide us with quantitatively accurate phase
diagrams of the model. Further, they also furnish direct in-
formation about both the nature of the phase transition and
the correlation functions in the Mott phase.6,8,9 These fea-
tures, along with the possibility of accessing much larger
system sizes than possible in exact diagonalization studies,
make them the numerical method of choice for the lattice

Bose-Hubbard models. A combination of the dual vortex
theory and QMC simulation has been recently used to study
the phases of Bose-Hubbard model on triangular4,8 and
kagome lattices.5,6 As noted in these works, the Bose-
Hubbard model can also be mapped onto a spin-1/2 XXZ
model5 leading to interpretation of the obtained results in
terms of both bosons and quantum spins.

More recently, there have been several studies of the an-
tiferromagnetic Heisenberg model on a star lattice.10–12 This
lattice, shown in Fig. 1, can be constructed by expanding the
sites of a hexagonal lattice into triangles. It consists of two
topologically inequivalent bonds, triangular and expanded,
as shown in Fig. 1. It has been argued in Ref. 11, using exact
diagonalization studies, that the ground state of the Heisen-
berg model on this lattice is a paramagnetic valence bond
crystal �VBC�. Such a VBC state is characterized by en-
hanced antiferromagnetic correlations along the expanded
bonds indicating singlet formation along those bonds. Such
studies have also been extended for the anisotropic antifer-
romagnetic Heisenberg model where the exchange coupling

FIG. 1. �Color online� The star lattice. The “triangle” bonds are
denoted by thin lines and the “expanded” bonds are denoted by
thick lines.
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JT on triangles is different from the coupling JE on expanded
links.10 It has been argued in Ref. 10 that there may be an-
other VBC state for JT�1.3JE which consists of 18-site star
pattern. Possible spin-liquid and valence-bond crystal phases
are also studied in an Sp�N� generalized model.13 These stud-
ies, till date, have not been extended to other spin models
such as the XXZ model.

In this work, we study the Bose-Hubbard model, or
equivalently, the XXZ model on a star lattice. The Hamil-
tonian of the model can be represented in terms of hardcore
bosons as

Hb = − �
�ij�

�tijbi
†bj + H.c.� + �

�ij�
Vijninj − ��

i

ni, �1�

where tij�Vij� is the hopping amplitude �interaction strength�
of the Bosons between sites i and j, bi denotes annihilation
operator of the boson at site i, ni=bi

†bi is the number density
operator for the Bosons at site i, �ij� indicates that sites i and
j are nearest neighbors of each other, and � is the chemical
potential. This model, in contrast to the Heisenberg model on
frustrated lattices, is amenable to QMC studies. In what fol-
lows, we shall allow for different amplitudes of hopping am-
plitude and interaction strengths: tij = tE and Vij =VE for ex-
panded bonds and tij = tT and Vij =VT for triangular bonds. In
this work, we shall set tE / tT=VE /VT. We note at the outset
that this model can be mapped onto an XXZ model in a
magnetic field via a Holstein-Primakoff transformation5 and
yields

HXXZ = −
1

2�
�ij�

J�
ij �Si

+Sj
− + Si

−Sj
+� + �

�ij�
Jz

ijSi
zSj

z + hz�
i

Si
z,

�2�

where J�
ij = tij, Jz

ij =Vij, hz= ��−1 /2�, and the spin operators
are expressed in terms of the boson operators as Si

+

=bi
† , Si

−=bi , Si
z=bi

†bi−1 /2 in the leading order in 1 /S. We
shall use these spin and the boson representations of the
model interchangeably throughout the paper. Note that half
filling in boson language means zero magnetic field in spin
language.

The central results reported in this work are the following.
First, using QMC simulation for sufficiently large systems
�L�60� and low temperatures ��−1�0.001J��, we obtain a
phase diagram of the Bose-Hubbard �XXZ� model as a func-
tion of the � /VE�hz /Jz

E� and tE /VE�J�
E /Jz

E� for fixed ratios
VT /VE�tT / tE�. We find that there are three distinct Mott
phases at boson fillings 1/2 and 1/3. Second, using QMC
simulations, we compute the equal-time spin-spin correlation
functions and the real-space bond-bond correlation functions
for the bosons �spins�. From these studies, we demonstrate
that two of these Mott phases, which occur for JT=JE at 1/2
and 1/3 fillings, are translationally invariant and do not ex-
hibit density-wave order �magnetization�. These Mott states,
in stark contrast to their counterparts in square, triangular, or
kagome lattices,7–9 are found to have resonating valence
bonds �RVB� along either the triangle or the expanded links.
The third Mott phase has coexisting density-wave �Néel� and
RVB orders and occur for JT�JE and at 1/2 filling. These
QMC results regarding the nature of the Mott phases are also

supported by qualitative symmetry-based analysis using dual
vortex theory. Third, the translationally invariant Mott states
occurring for JT=JE are found to undergo a second-order
superfluid-Mott insulator quantum phase transition with in-
creasing tE /VE �in the spin language, this transition corre-
sponds to a shift from Sx to Sz ordering if Sz ordering is
present or from Sx ordering to a paramagnet if such an or-
dering is absent�. This is also in contrast to analogous studies
on square, triangular, and kagome lattices,7–9 where QMC
simulations found evidence of either a direct first-order tran-
sition between the superfluid and the Mott phases or an in-
termediate supersolid phase. A qualitative symmetry-based
analysis using the dual vortex theory finds this transition to
be in the inverted XY universality class, when the transition
point is approached through the tip of the Mott lobes. This
observation is also supported by a finite-size scaling studies
using QMC simulations which yields the dynamical critical
exponent z and the correlation length exponent � for the
transition.

The organization for the rest of this work is as follows. In
Sec. II, we elucidate our QMC results. We deal with the case
J�

T =J�
E in Sec. II A and follow it up with the study of the

case J�
T �J�

E for 1/2 filling in Sec. II B. These numerical
results are then compared with the analytical predictions of
the dual vortex theory in Sec. III. This is followed by con-
clusion in Sec. IV.

II. QUANTUM MONTE CARLO

In this section, we shall analyze the model using quantum
Monte Carlo. We use a multisite generalization14 of the sto-
chastic series-expansion method.15 Here the basic lattice unit
is a site and all its neighbors. Simulations are performed for
systems of linear size L=12,18,24,36,48,60 with N=6L2

sites at different temperatures �the lowest temperature is
�−1=J� /1200�. In Sec. II A, we study the isotropic case with
equal hopping and interaction strength on the triangle and
expanded bonds while the anisotropic case is studied in
Sec. II B.

A. JT=JE

1. Phase diagram

The phase diagram obtained for JT=JE is shown in Fig. 2.
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FIG. 2. �Color online� The schematic JT=JE phase diagram from
Monte Carlo simulations. The phase boundaries are denoted by
thick solid lines. Monte Carlo scans are denoted by dashed lines.
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There are three phases: the XY ferromagnet and two valence
bond crystals denoted by VBC1 and VBC2. In the boson
language, they correspond to the superfluid and Mott phases,
respectively. The characteristics of these Mott phases and
their transition to the superfluid phase is discussed in Secs.
II A 2 and II A 3 in details. We note here that the Monte
Carlo scans are performed only along three lines shown in
the phase diagram so that the phase boundaries are approxi-
mate.

2. Half filling

In this subsection, we focus on the model in the absence
of an applied magnetic field, i.e., at 1/2 filling for bosons.
There is a continuous transition from the superfluid phase to
an insulating phase at Jz /J��3.0783. In the vicinity of a
continuous transition, the spin stiffness of the XY ferromag-
net �or superfluid density in the boson language�, �s, which is
measured through winding number fluctuations, scales as

�s = L−zF�s
�L1/��Kc − K�,�/Lz� , �3�

where F�s
is the scaling function, L is the linear system size,

z is the dynamical critical exponent, � is the correlation
length exponent, �Kc=Kc−K= �Jz /J��c−Jz /J� is the dis-
tance to the critical point, �= �kBT�−1 is the inverse tempera-
ture, and kB is the Boltzmann constant. It follows from the
above finite-size-scaling relation �Eq. �3�� that the curves for
different systems sizes should cross at the transition point
when �sL

z is plotted as a function of the coupling constant

for � /Lz fixed �or for large enough � to ensure the ground-
state convergence�. It also follows from Eq. �3� that the
curves for different system sizes should collapse onto a uni-
versal curve for appropriate values of � and �Jz /J��c when
�sL

z is plotted as a function of �KcL
1/�. The data scale well

with the dynamical critical exponent z=1. In Fig. 3, �sL is
shown as a function of the coupling constant. The curves for
different system sizes cross at a distinct point. The data col-
lapse is shown in Fig. 4 and leads to a critical exponent �
=0.67.

To address the nature of the insulating phase for Jz	J�,
we study the equal time and static spin-structure factors that
are given by

S�q� = L2�Sq

† Sq
�, ��q� = L2	
 d
Sq


† Sq0� , �4�

where Sq
= �1 /L2��iSi

z exp�iq ·ri�. The structure factors in

the insulating phase are shown in Fig. 5. There are no sharp
peaks which is a clear indication of absence of magnetic
order. The short-range bow-tie features, found to be present
in the structure factor, are likely to be a remnant of classical
dipolar correlations at finite temperatures, that are known to
arise in classical Heisenberg models on various frustrated
lattice.

The nearest-neighbor antiferromagnetic spin-spin correla-
tions are strongly enhanced along the expanded bonds
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FIG. 3. �Color online� Scaling of the superfluid density �s for
z=1, �=16L /J� and hz /J�=0. Lines guide the eye. In this and all
other figures, error bars are smaller than the symbol size if not
visible.
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FIG. 4. �Color online� Data collapse of the superfluid density �s

for z=1, �=0.67, �Jz /J��c=3.0783, �=16L /J�, and hz /J�=0.
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FIG. 5. The equal-time spin-spin structure factor �left panel� and
the static structure factor �right panel� for L=24, Jz /J�=4, hz /J�

=0, and kBT=0.002J�. The axes range from −4� to 4�.
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FIG. 6. �Color online� The correlation function Cb�r1−r�� be-
tween the bond indicated by a large text and the other bonds for
L=24, Jz /J�=4, hz /J�=0, and kBT=0.01J�.
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�bonds that connect triangles� signaling singlet formation
along those bonds: ��SzSz�e��2.92��SzSz�t� for Jz /J�=4,
hz /J�=0, and T=0.01J�. To verify this, we further compute
the real-space bond-bond correlation function that is given
by

Cb�r − r�� = 	 1

�

 B
d

 B�
d
� , �5�

where B��i,j�,
=J��Si
xSj

x+Si
ySj

y� is the off-diagonal bond op-
erator �at imaginary time 
� of the bond � connecting spins i
and j. A plot of Cb�r−r�� in Fig. 6 shows that the off-
diagonal bond operators are distributed uniformly on the ex-
panded and triangle bonds with the majority of operators on
the expanded bonds with a ratio 10.1 /2.95�3.42. There is
no any other bond order. Thus the real-space bond-bond cor-
relation function also confirms the formation of singlets
along the expanded bonds. This leads us to conclude that the
most probable candidate for this insulating phase is VBC
with no symmetry breaking and is analogous to the VBC
state described in Ref. 11. We denote this phase as VBC1.

3. 1/3 filling

In this section, we focus on the phase diagram away from
the 1/2 filling, or, in the spin language, in the presence of an
applied longitudinal magnetic field. As shown in Fig. 2, there
is an additional VBC phase �denoted as VBC2� at the filling

of 1/3 �spin magnetization equals −1 /6�. The transition from
the XY ferromagnet phase to the VBC2 phase is continuous.
Within the system size and temperatures that we have stud-
ied, we have not found any signatures of a first-order transi-
tion such as double peaked histograms. As shown in Figs. 7
and 8, the data scale reasonably well with z=2 and �=0.5. It
is worth mentioning that the scaling is not as good as that for
the transition to the VBC1 phase described in the previous
section. The quality of the scaling is probably limited by the
fact one needs data of very high accuracy at extremely low
temperatures and very large system sizes �in order to reach
the scaling regime given by Eq. �3�� and that is beyond our
computational facilities at the present time.

As shown in Fig. 9, the VBC2 phase does not exhibit
magnetic order. The connected spin-correlation function is
shorter ranged than the spin-correlation function in the
VBC1 phase. This can be deduced from the larger bow-tie
width in Fig. 9 compared to Fig. 5. The nearest-neighbor
antiferromagnetic spin-spin correlations are slightly weaker
along the expanded bonds: ��SzSz�e��0.78��SzSz�t� for
Jz /J�=4, hz /J�=3, and kBT=0.01J�. As shown in Fig. 10,
the ratio of the number of the off-diagonal operators on the
expanded bonds to that on the triangle bonds is 0.45 /1.71
�0.26. Thus, in contrast to the VBC1 phase, the spins reso-
nate along the triangle bonds in the VBC2 phase forming
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FIG. 7. �Color online� Scaling of the superfluid density �s for
z=2, �=L2 /3J�, and Jz /J�=4. Lines guide the eye.

0

0.1

0.2

0.3

0.4

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

ρ s
L

2

∆KL1/ν

L=24
L=36
L=48
L=60

FIG. 8. �Color online� Data collapse of the superfluid density �s

for z=2, �=0.5, �hz /J��c=2.37568, and �=L2 /3J�. �K= �hz /J��c

−hz /J� at fixed Jz /J�=4.
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FIG. 9. The equal-time spin-spin structure factor �left panel� and
the static structure factor �right panel� for L=24, Jz /J�=4, hz /J�

=3, and kBT=0.005J�. Ferromagnetic peaks due to the uniform
background magnetization are subtracted. The axes range from −4�
to 4�.
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FIG. 10. �Color online� The correlation function Cb�r1−r�� be-
tween the bond indicated by a large text and the other bonds for
L=24, Jz /J�=4, hz /J�=3, and kBT=0.01J�.
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trimers. There is no other bond order. We can conclude that
the VBC2 phase is a quantum paramagnetic phase without
any symmetry breaking.

B. JTÅJE at hz=0

The schematic JT�JE phase diagram at 1/2 filling is
shown in Fig. 11. There are again three phases: the XY fer-
romagnet �superfluid in the boson language�, the valence-
bond crystal phase from Sec. II A �VBC1�, and a phase that
is characterized by both VBC order and Néel-type magnetic
order and is denoted as VBC-Néel. The latter two phases are
Mott states in the boson language. Monte Carlo scans are
performed only along a few lines so that the phase bound-
aries are approximate. We have not attempted to determine
the nature of phase transitions. However, as shown in Fig.
12, we find a narrow region with finite superfluid density
between the VBC1 and VBC-Néel phases even for large
Jz

T /J�
T .

In Fig. 13, we show the real-space bond-bond correlation
function for different values of Jz

E /Jz
T. There are singlets on

the expanded bonds for large Jz
E /Jz

T �VBC1 phase� and there
are resonating triangles �trimers� for small Jz

E /Jz
T �VBC-Néel

phase�. The VBC-Néel phase also exhibits long-range mag-
netic order. In Fig. 14, we show the finite-size scaling of the
equal-time-structure factor given by Eq. �4� at the ordering
wave vector Q= �2� ,2��. Note that the structure factor van-
ishes at Q= �0,0� due to geometrical factors. The structure
factor divided by the number of lattice sites clearly scales to
a finite value in the thermodynamic limit indicating long-

ranged magnetic order. The triangles of the star lattice form
the bipartite hexagonal lattice. The structure of the real-space
correlations is such that the spins on two different sublattices
of the hexagonal lattice �belonging to up and down triangles
in Fig. 1� have antiferromagnetic correlations as in a Néel-
type ordered state. This long-ranged magnetic order corre-
sponds to density-wave order in the boson language.

To understand the VBC-Néel state in more detail, con-
sider isolated triangles �JE=0�. There are two degenerate
ground states per triangle. These are resonating trimers with
the total spin Sz=−1 /2

��1� =
1
3

��− − + � + �− + − � + �+ − − ��

and the total spin Sz=1 /2
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FIG. 11. �Color online� The schematic JT�JE phase diagram at
1/2 filling from Monte Carlo simulations. The phase boundaries are
denoted by thick solid lines.
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��2� =
1
3

��+ + − � + �+ − + � + �− + + �� ,

where +�−� indicate sites with Sz=1 /2�−1 /2�. In the boson
language, ��1� and ��2� correspond to one and two bosons
per triangle respectively. At 1/2 filling, the number of spin-up
triangles is equal to the number of spin-down triangles. For
JE=0, those triangles can be arranged arbitrary on the star
lattice and the ground state is extensively degenerate. How-
ever, finite JE selects a Néel state with respect to the total
spins of the triangles because the triangles form a bipartite
lattice and the effective interaction between them is antifer-
romagnetic. A similar state is also found in the dual vortex-
theory analysis, see the next section.

III. DUAL VORTEX THEORY

In this section, we shall obtain an analytical understand-
ing of the nature of the Mott phase and the quantum phase
transitions from them to the superfluid phases. Throughout
this section, we shall restrict ourselves to the isotropic case
JT=JE.

The derivation of a dual vortex action starting from the
Bose-Hubbard model �Eq. �1�� has been elaborated in Refs.
3–5. The vortices are described in terms bosonic field �b and
a dual gauge field Ab� which lives on the sites b and links �
of the dual lattice, respectively. A duality analysis of the
Bose-Hubbard model then leads to an effective dual action
which can be expressed in terms of the vortices and the
gauge fields as3

Z =
 DA
 D� exp�− Sd� ,

Sd =
1

2e2�
b

�������Ab� − f��
�2

− yv�
b

��b+�e2�iAb��b + H.c.�

+ �
b

�r��b�2 + u��b�4� , �6�

where �b are the vortex field living on the site b of the dual
lattice, Ab� is the U�1� dual gauge field such that
�
����Ab�=ni where ni is the physical boson density at site i,
�p denotes sum over elementary plaquette of the dual lattice,
�� denotes lattice derivative along �=x, y, 
, and f is the
average boson density. Here yv is the vortex fugacity and r,
u, and e denote parameters of the dual action which cannot
be directly mapped onto those of Hb since Sd is not self-dual
to the boson action obtained from Hb. Therefore we cannot,
in general, obtain a direct mapping between the parameters
of the two actions, except for identifying the magnetic field
seen by the vortices �
����Ab� as the physical boson
density.3–5 In the remainder of the paper, we shall classify the
phases of this action based on symmetry consideration and
within the saddle-point approximation where the gauge fields
are pinned to their saddle-point values.

The star lattice and its dual is shown in Fig. 15. The first

step toward understanding the phases of Sd within a saddle-
point approximation amounts to solving the Hofstadter prob-
lem for the vortices on this dual lattice shown in Fig. 15. We
note from Fig. 15 that the lattice dual to the star represents a
dice lattice with all diagonals connecting the A sites joined to
each other. The Hamiltonian of the vortices on such a lattice
is given by

H = − yv�
�ij�

�
�,�=A,B,C

��i�
† � j�eiij + H.c.� , �7�

where �i�����ax ,ay� denotes the annihilation operator for
vortex fields at i��ax ,ay� and ij is the dual magnetic flux,
which in the gauge A� =H�0,x�, is given by

ij = 2�f�2ax/a + ����yj� − yi�� , �8�

where we have used xi=ax, xj =ax+��a, y�=2y / �3a�, and
f =H3a2 /4�0 is the flux passing through an elementary tri-
angle in units of basic flux quanta �0, and �� is a number
that depends on the sublattice index �=A ,B ,C. Here the
dual flux passing through an elementary plaquette is double
of that of the dice lattice. This can be inferred from the fact
the present lattice has two sites of the star lattice in each
rhombus �as opposed to one site of the kagome lattice in
each rhombus� of the dice lattice.5,16

The Schrodinger equation for the vortex fields can be con-
structed from the Hamiltonian. With our choice of the gauge,
we can write ���ax ,ay�=ei�yy����ax�, where �y =2aky /3
� �0,�� since we are restricted within the first Brillouin
Zone, and �=A ,B ,C represents the inequivalent sites of the
dual lattice. We thus obtain, writing energy � in units of t and
defining ��=2�f�2ax /a�1 /2�+�y

− ��B�ax� = �A�ax + a� + 2�A�ax − a/2�cos �+, �9�

− ��C�ax� = �A�ax − a� + 2�A�ax + a/2�cos �−, �10�

C

A A

A

B

B
B

C

C

A

FIG. 15. �Color online� The star lattice and its dual. Notice that
the A sites are in the center of the hexagon of the dual lattice while
the B and the C sites are in the center of the triangle.
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− ��A�ax� = �B�ax + a� + �C�ax − a�

+ 2�B�ax − a/2�cos��−�

+ 2�C�ax + a/2�cos��+�

+ 2�A�ax + 3a/2�cos�2�f + �+�

+ 2�A�ax − 3a/2�cos�− 2�f + �−�

+ 2�A�ax�cos��+ + �−� . �11�

Note that if we ignore the last three terms in the rhs of Eq.
�11� which involves �A, we get back the dual Hofstadter
equation for the dice lattice.5,16 To solve for �, we substitute
Eqs. �9� and �10� in Eq. �11� and get, using ax=3ma /2 for all
A sites

��2 − 6��Am = �4 cos�2�f� − 2��Cm,

Cm = �Am+1 cos�6�f�m + 1/2� + �y�

+ �Am−1 cos�6�f�m − 1/2� + �y�

+ �Am cos�12�fm + 2�y� . �12�

We first consider the case f =2 /3, which is identical to the
f =1 /3 filling considered in Sec. II A 3. Here Eq. �12� re-
duces to

��2 − 6��Ak = − 2�1 + ��Ak�Ak,

Ak = 2 cos�kx��cos��y� + cos�2�y� , �13�

where we have taken Fourier transform with respect to m and
kx�=3kxa /2� �0,��. This has the solution

�� = − Ak � ��Ak − 1�2 + 5�1/2 �14�

so that the minima of the vortex spectrum occurs at
�kx� ,�y�= �0,0� , �� ,�� and corresponds to �=−6. Also, sub-
stituting the values of kx� and �y in Eqs. �9� and �10�, we find
that �B�kx��=0=�C�kx�� so that the eigenfunctions correspond-
ing to �kx� ,�y�= �0,0� , �� ,�� are given by

�1�m,n� = �1,0,0�, �2�m,n� = �1,0,0�ei��m+n�, �15�

where we have used ay =3na /2 for the A sites. Note that
since m+n is always even for A sites �1=�2 and hence the
theory has a single vortex field which should mediate the
transition. Also note that the Mott state is expected to be
uniform since �1 is basically a constant. Thus the simplest
state compatible with these requirement at 2/3 filling is
shown in Fig. 16. Here each triangle denoted by a circle,
within mean field, has two occupied and one empty sites
leading to a net occupancy of two bosons per triangle.
Equivalently, in the spin language, this corresponds to two
spin-up and one spin-down sites at every triangle leading to
a net magnetization of 1/2. However, it is indeed possible
that inclusion of quantum fluctuations will make the bonds
within the triangle to resonate leading to the trimerized
VBC2 state obtained in QMC studies.

The theory of transition pertains to a single vortex field in
the presence of a fluctuating dual gauge field and is thus
belongs to the inverted XY universality class which has z
=1 and �=2 /3.17 These exponents are the same as their

counterparts for models in the three-dimensional XY univer-
sality class. However, the key difference is that this exponent
is obtained for a fully interacting model in D=2+1 in the
strong interacting regime. This is in contrast to D=3+1 di-
mensional systems where one expects the transition to be
fluctuation-driven first order.18 We note that this expectation,
which was initially derived using an �=4−d expansion
method, is not valid for D=2+1 quantum systems where
such transitions remain continuous.17 Note that the quantum
phase transition described by this dual vortex theory requires
a fixed density across the transition and hence is valid when
the transition is approached via the tip of the Mott lobe. The
QMC study of Sec. II A 3 approaches the transition from the
side of the lobe and hence gets a different z.

Next we come to case of f =1 /2. Substituting f =1 /2, in
Eq. �12�, one gets

��2 − 6��Am = − 4�1 + �/2�Cm,

Cm = − �Am+1 sin�3�m + �y�

+ �Am−1 sin�3�m + �y� + �Am cos�2�y� . �16�

Thus here we need to distinguish between the sites which
have m as even and odd integers. Denoting the correspond-
ing fields as �e and �o, respectively, we find that

��2 − 6 + 4�1 + �/2�cos�2�y���Ak
e + Ck�Ak

o = 0,

��2 − 6 + 4�1 + �/2�cos�2�y���Ak
o + Ck

��Ak
e = 0,

Ck = 8i sin�kx��sin��y��1 + �/2� . �17�

Note that here kx� , �y � �0,� /2� since the periodicity in real
space has been doubled. From Eq. �17�, we find that �=
−Ak���Ak�−2�2+2 where

FIG. 16. �Color online� Mott state at f =2 /3. The circles indicate
a triangle with either two spin up and one spin down on the three
vertices or a trimerized triangles indicted by circles when superpo-
sition of the spins/bosons due to quantum fluctuations are allowed.
The state is translationally invariant and agrees with the VBC2 state
predicted by QMC when quantum fluctuations are included. The
corresponding ground state for f =1 /3 can be obtained by simply
flipping the spins.

BOSE-HUBBARD MODEL ON A STAR LATTICE PHYSICAL REVIEW B 80, 214503 �2009�

214503-7



Ak� = cos�2�y� � 2�sin�kx����sin��y�� . �18�

Thus the minima of the spectrum occurs at �kx� ,�y�
= �� /2,� /6� with �=−3. Substituting the value of � in Eq.
�17�, we find �A

e = i�A
o . Also, substituting the values of

�A
e /�A

o = i, kx�=� /2, and �y =� /6, we find �B and �c from Eq.
�16�. Finally, this yields the wave function

�1
e�o� = �1�− i�,0,c�− ci��ei�a1ei�a2/6, �19�

where c=2 /3, the coordinates of odd and even sites are taken
to be �a1 ,a2�= �2m+1,2n+1� and �a1 ,a2�= �2m ,2n� and we
have not renormalized the wave function. Thus, the theory of
transition again pertains to a theory of single vortex field in
the presence of fluctuating dual gauge field and belongs to
the inverted XY universality class with z=1 and �=2 /3. This
is compatible with the exponents obtained by QMC study in
Sec. II A 2.

Finally, we consider the possible Mott states for f =1 /2.
These are obtained from qualitative argument outlined below
and are shown in Figs. 17 and 18. From the vortex wave
function �Eq. �19��, we find that all the B sites of the dual
lattice are equivalent. Thus the triangles of the star lattice
whose centers are occupied by B sites of the dual lattice must
have the same filling and can be filled with n=0, 1, 2, or 3
bosons �or n up and 3−n down spins per triangle in the spin
language�. This leaves 3−n bosons �or 3−n up and n down
spins� to be distributed over triangles which contain a C site
of the dual lattice. Such a distribution must have the requisite
periodicity of the wave function, i.e., a 4�12 unit cell which
involves four A sites �four hexagons of the real lattice� in the
x direction and 12 A sites �12 hexagons of the real lattice� in
the y direction. Thus we find a multitude of energy-
equivalent mean-field states with 4�12 units cells which
corresponds to different ways of filling these sites keeping
the total boson density �or magnetization� fixed to 3−n on
the C sites. Similar to the case of XXZ model on a kagome
lattice analyzed in Ref. 5, these states can superpose in the
presence of quantum fluctuations leading to a pattern having

n Bosons in every triangle which has a B site of the dual
lattice at its center and 3−n bosons �on the average� in every
triangles which has a C site of the dual lattice at its center.
Now if we allow the spins on the joining links of these
triangles to hybridize, we get a translationally invariant
dimerized state, shown in Fig. 17, where each of the connect-
ing bonds of the triangle can form a singlet dimer. This state
is analogous to the VBC1 state obtained in QMC study. An-
other possible state, shown in Fig. 18 which correspond to
n=2 or n=1, where the one bond in each of these triangles
can hybridize �or form a valence bond�, leads to the transla-
tion symmetry broken state shown in Fig. 18. This state is
analogous to the VBC-Néel state found in QMC studies for
JT�JE. There may be other possible states and a full classi-
fication of all of them seems to be difficult. We point out that
the classification of these Mott states necessarily requires
incorporation of quantum-fluctuation-induced superposition
between possible mean-field states.

IV. CONCLUSION

In conclusion, we have presented a study of Bose-
Hubbard or equivalently spin 1/2 XXZ model on a star lat-
tice using both QMC and dual vortex theory. We have shown
that for JT=JE, the model supports translationally invariant
RVB Mott phases at f =1 /2 and f =1 /3 and have pointed out
that these phases are different from their counterparts with
broken translational symmetry in square, triangular, and
kagome lattices. We have also shown that these phases, upon
increasing the ratio of nearest-neighbor hopping amplitude to
interaction strength, undergo a direct second-order quantum
phase transition to a superfluid phase. We have identified the
exponents of this transitions and shown that they belong to
the �2+1�D inverted XY universality class with z=1 and

FIG. 17. �Color online� A possible Mott state with all the con-
necting bonds of the triangles forming dimers. The dimerized bonds
are shown by thick lines. This state can occur for n=0, 1, 2, or 3
and is identical to the VBC1 phase predicted by QMC when quan-
tum fluctuations are included. See text for details.

FIG. 18. �Color online� Another possible state at f =1 /2 for n
=2. The large �red� circles indicate B sites and the corresponding
triangles have one dimerized bond and an up spin while the small
�blue� circles mean a triangle with one dimerized bond and a down
spin. A similar state for n=1 can occur and can be obtained by
simply interchanging the sizes �colors� of the B and the C sites. This
state is identical to the VBC-Néel phase predicted by QMC when
quantum fluctuations are included. See text for details.
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�=2 /3 when approached through the tip of the Mott lobe.
When the transition is approached from the side of the Mott
lobe for f =1 /3, QMC finds a second-order transition with
z=2. Such clear signatures of second-order quantum phase
transitions is in contrast with the behavior of the model on
square, triangular, or kagome lattice, where these transitions
are either first-order or are accompanied by intermediate su-
persolid phases. We have also provided a phase diagram for
the system at 1/2 filling for JT�JE and have demonstrated

the existence of a Mott phase with coexisting density-wave
�Néel� and RVB orders.
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